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1. INTRODUCTION

This report addresses the problem of utilizing spatial-hyperspectral imaging
capabilities of space-borne sensors to detect and characterize regions of atmospheric
turbulence and cirrus cloud clutter which may impact employment and/or performance of
space based laser and airborne high energy laser weapons systems.

Our concept for worldwide detection, characterization and mapping of atmospheric
turbulence and cirrus clouds involves use of satellite-borne (and possibly airborne) spectral
and hyperspectral imagers operated in the UV to MWIR spectral range in virtual triangulation
geometry. Spectral and hyperspectral imagery allows altitude sounding of atmospheric clutter
from turbulence and cirrus clouds. Triangulation geometry allows precise altitude selection by
cross correlation of the backscatter signals. The combination of altitude and Fourier-space
background spectral discrimination will provide an altitude resolved measurement of
atmospheric clutter from clear air turbulence and from cirrus clouds, both of which may affect
performance of the SBL (Space Based Laser) and the Airborne Laser (ABL) systems.

Figure 1 illustrates the virtual triangulation concept by forward-looking and backward-

looking imaging sensors from a satellite.
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Figure 1 Conceptual Optical Triangulation Geometry to Isolate Atmospheric Turbulence, Characterize
Ground-based Clutter, and Detect Weak Targets, The virtual triangulation geometry allows mapping of
random atmospheric clutter and CAT vs. altitude by cross correlation of forward-viewing and backward-
viewing imaging signals and assists in separating weak airborne targets from the atmospheric background
clutter.




We anticipate that the conceptual satellite sensor can be tested on ground-based and airborne

platforms prior to finalization of a satellite sensor design. This phase one SBIR project has
initiated such conceptual tests but further work is required, especially with respect to airborne

tests of the concept versus clear air turbulence (CAT).

Anticipated commercial applications of this research are automated background scene content
identification and weak target recognition by small, real-time programmable space-borne
sensors and remote sensing of atmospheric structure which leads to a capability for mapping

CAT (clear air turbulence) from airborne or space-borne detectors.

2. STATEMENT OF PROBLEM AND MEASUREMENT CONCEPT

2.1.1 Technical Problem Summary
The technical problem addressed by this SBIR program is to devise unique spatial-spectral
satellite-based observation techniques to detect weak targets in the presence of background
clutter. The weak targets that we address are in order of observability:

o small, low observable airborne vehicles,

¢ thin atmospheric cirrus clouds,

e atmospheric clear air turbulence, and

e turbulent structure in the troposphere, stratosphere, and lower thermosphere.
This report concentrates on the more difficult “targets”, atmospheric turbulence and clear air
turbulence (CAT) layers. The rationale for measurement of the atmospheric quantities is that
this class of backgrounds forms the limiting cases of background clutter, which if measurable

by a satellite passive sensor ensures that other airborne targets, will be detectable.

2.1.2 Technical Approach

We validated the virtual triangulation — spectral — spatial weak target detection and
characterization technique by analytical simulation techniques and by experimental simulation
using ground-based spectral-spatial structure sensors and by using the GLO sensors carried on

the Space Shuttle’.




Validation by Simulation

We used the NSS (Non-stationary Stochastic Structure) Model® and LAMSS? (Low Altitude
Mesoscale Stochastic Structure) models to simulate structure in the mesopause region (~90
km) and in the troposphere (< 20 km) respectively. These simulations were generated using
an geometrical driver for the sensor LOS to generate an artificial data stream appropriate to

the experimental validation geometries.

Validation by Experiment

Two experiments were conducted to validate the satellite sensor cross-beam concept: a low
altitude experiment measured turbulent structure and winds in the boundary layer between
about 50 and 300 feet altitude. We intended that the daytime measurements would be
coordinated with meteorological tower measurements of winds and turbulence but this
experiment could not be consummated under the resources of the project. A high altitude set
of measurements was conducted at nighttime used the airglow emission in the 80 to 130 km
altitude range to provide the signal. Daytime experiments used the Kestrel AIRCAM sensors.
operating in the 450 to 950 nm spectral range. The nighttime high altitude structure
experiments used the Fourier Transform Hyperspectral Imager FTHSI and supporting

imaging instrumentation from LANL and University of Arizona.

2.1.3 Results Summary

The Phase I simulations and ground-based experiments validated to a certain extent the ability
of a satellite-borne passive atmospheric structure sensor to provide worldwide measurements
of atmospheric turbulence and wind structure especially thin cirrus clouds and clear air
turbulence. Validation experiment results may be applied to further experiments to determine
atmospheric structure phenomenology and clutter maps for the Airborne Laser System (ABL),
the Space-based Laser System (SBL), CAT maps for the civilian sector, and detection weak

targets through efficient mitigation of of atmospheric background structure-induced clutter.




3. CONCEPT VALIDATION

The atmospheric structure sounding concept was validated by two techniques. Simulation of
atmospheric structure and synthesis of atmospheric backscatter signals for low altitude
structure and atmospheric airglow signals for high altitude structure was carried out for a
limited number of cases and scenarios. Experiments designed to simulate possible satellite
and/or airborne sensor environments and their respective signals generated by structure were
conducted to investigate the utility of Hyperspectral Imagery. Data from the GLO sensor that

has been repeatedly flown on the Space Shuttle also contributed to our experimental database.

3.1 VALIDATION BY SIMULATION
3.1.1 Simulation of Winds and Turbulence

Atmospheric turbulence was simulated in two dimensions by the technique demonstrated by
Strugala and Sears, et. al. (See reference ). Two different two-dimensional spectra were
adopted: a k>”power law approximates the turbulence spectrum for an optically thick

medium, and ak *?

power law spectrum approximates an optically thin turbulent medium.
Both spectra are of the modified Kolmogorov type with a correlation length of 10 cm, about
the value expected for the lower atmosphere.

Equation 1 illustrates the functional form of the spectra for a two dimensional scene:

P(ks, ky) = [[(p)T(p) Lox Loy V {k/Lex} * +{ky/Ley} *1}P (1)
Where,

p=5/6or 8/6 for k> or k’*? spectral forms respectively,

n = (p-1)/p,

k,, is the spatial frequency in either x or y dimension

I'( n) is the gamma function with argument determined by the spectral index




The background spatial scenes were implemented using the method of Strugala and Sears
wherein a random Gaussian number field is created, then convolved with the desired 2-D
spectral function (equation 1) to achieve a correlated random background intensity field.
Figure 2 illustrates the two dimensional scenes generated by the simulation routine. Here, we
used the same random number set in two dimensions to generate the arrays and vary only the
power spectral density slope. A 64x64 pixel sample was cut from each 256x256 scene to
show that the higher slope (k-8/3) has much more high frequency structure as indicated by the

density of the contour lines. Each picture was digitized to a six-level contour interval.
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Figure 2 Contour maps of 2-D scenes generated from the same Gaussian random
pumber field, but with spectral indices of k ~>* (left) and k™*° (right) which physically
corresponds to Kolmogorov turbulence in an optical thick and optically thin medium.

In order to simulate the effects of winds on the turbulence observations, we cut subimages
from the 256x256 images and displaced them spatially by a constant number of pixels in the x
and y dimensions. The analysis algorithms then were applied to compute the complex cross

power spectral densities of the spectral images.

The basic algorithms used for the triangulation geometry as well as the successive frame
analysis in the vertical direction is the cross power spectral density algorithm group first

applied to geophysical phenomena by Gossard et. al.* The Cross Power Spectra for either a set




of one dimensional vector quantities V1, V2, or a sequence of two dimensional images I1, I2

may be generically expressed as:
XP(V1;,V2;0rll i, 12)= CFT(V1 +iV2, or I1+I2) 2)

Where the data vectors or image fields have indices i, and i,j respectively
CFT is the complex Fourier Transform with the vector or image quantities combined

as a complex argument.

Whereas Gossard et al described the process in terms of the cross correlation functions of a
data series, modern algorithms such as the Fast Fourier Transform allow direct computation
of the data set. This analytical procedure was implemented by using standard complex Fourier

Transform Algorithms contained in Mathcad.’

3.1.2 Simulation of Triangulation Geometry
We simulated the triangulation geometry in two dimensions corresponding to the right angled

intersection of the low altitude structure and wind experiment described later.

3.1.3 Signal Analysis of Simulations

We analyzed the simulation experiments for two cases. The 2-D single beam, vertical looking
geometry that corresponds to the low altitude experiments measures MWIR scattered sunlight
as a signal as the turbulent scattering irregularities are convected through the field of view of
the sensors. The 2-D low altitude triangulation geometry corresponds to the scattered sunlight

signal in the region of intersection of the sensor fields of view.

In the case of the vertical viewing sensor simulation, we computed the complex cross spectral
information in both real and imaginary regime and using standard signal processing
techniques (see reference 4) derived the AS (Amplitude spectra), PSD (power spectral
densities), IPSD (imaginary components of PSD), and the PHSD (Phase Spectra) for each
pair of images. Then we looked for peaks in the phase spectra (PHSD) which might

correspond to the motion of the turbulent scattered scenes across the sensor field of view.




The two dimensional PSD’s and Phase Spectra (PHSD) for an image array A are defined by
the standard expressions involving the periodogram PA of the array A which is derived from
the “cfft” complex Fourier Transform of the array A. In the simulation case, the image

arrays A are the computed Gaussian matrices GM.

PA = cfft(A), PSD = [PA] 3)
PHSD = - arctan (Im(PA)/(Re(PA) 4)

3 PSD input to the

As a diagnostic we compare in Figure 3 the ideal Kolmogorov k’
program, the computed periodogram for the convolution of the GM, Gaussian correlated
noise matrix, and the raw periodogram of the array GM itself. The periodograms will be

converted to power spectral densities (PSD’s) later in the analysis
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Figure 3 Left Image Compares the Correlated Gaussian Noise Matrix 1-Dimensional
Periodograms and the input data (smooth line). SME is the input PSD, PDSE is the
Periodogram of the Noised Gaussian Matrix, and PDGM is the Periodogram of the
Gaussian Noise Matrix before convolution with SME. Values of PDSE and SME are
normalized to their maximum values. The right image shows the 1-D PSD’s (lines) after
a Parzen filter is applied. The data points correspond to the noisey periodogram in the
left image. The x axes correspond to spatial frequency in units of inverse pixels.

This exercise confirms that the PSD of the simulated random turbulence field reproduces the

input spectrum.

Also it is necessary to validate that phase spectra can be produced, using the Gaussian

random structure simulation. Figure 4 illustrates the phase spectrum over the range of zero to

10




1/64 pixel spatial frequency range. Histograms indicate that the phase spectral field is a

correlated Gaussian distribution as expected.

TRP

Figure 4 Phase Spectrum for Gaussian Correlated Simulation Scene. The spectrum
extends from zero to 1/64 pixel spatial frequency in both spatial dimensions and from -
1 to 1 radian in phase.

The Cross Power Spectral Density and Cross-Phase spectra are used to estimate the spatial
displacement of the images and the vector velocity of the passage through the simulated two
fields of view, from successive analyses of the sub-image pairs that are separated by 20

pixels.
The 2-D Cross PSD is smoothed by the Parzen window technique and then converted to a 2-

D correlation function my means of a complex FFT. Figures 5A and 5B illustrate the 2-D

PSD as a 2-D plot, and as a pair of 1-D cuts along the axes.
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SXPA

Figure SA Smoothed Cross PSD as Figure 5B Smoothed Cross PSD

a surface plot. Note the occurrence shows spectral peaks on the frequency

of several spectral peaks x-y diagonal as anticipated. The other
peaks appear to be extraneous features.

The coordinates of Figure 5A are in units of spatial frequency divided by the pixel dimension
of the image (ie 128 pixels with 2 pixels being the Nyquist frequency). Units of 5B are in

inverse pixels such that 0.5 is equivalent to the Nyquist frequency of 1/(2 pixels).

After conversion of the 2-D Cross PSD’s to cross correlation plots, it is necessary to
threshold the data to bring out the pertinent features on the desired scale. Figures 6A and 6B
show respectively the un-thresholded 2-D cross correlation plot and the thresholded image.
The threshold chosen for this case was 7 times the standard deviation of the cross correlation

scene after removal of the random energy component at zero delay.

The axes are in units if 1/pixels, hence the value 0.5 is equivalent to 2 pixel displacement and
0.1 is equivalent to 10 pixels displacement. The length of the thresholded correlation value in
Figure 6B shows that the width of the correlation results equals about 20 pixels and is in the

diagonal dimension as specified by the original image pairs.

12




64 I | | 1 |
—64 —48 32 —16 O 16

(center(NRXCF1))

Figure 6A 2D Cross Correlation Plot
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Figure 6B 2-D Correlation Plot
Thresholded at 7 Sigma

Figures 7A and 7B show the phase spectrum thresholded at two levels, guided by the

histogram of phase (not shown here). Spatial frequencies are in units of inverse pixels.
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Figure 7A Exceedance Map for 1 sigma
Thresholded Phase Difference Spectrum.
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Figure 7B Exceedance Map for 3 sigma
Thresholded Phase Difference Spectrum.

13




VALIDATION BY EXPERIMENT
3.1.4 Low Altitude Wind and Turbulence Exberiments

Low altitude wind and turbulence experiments were conducted at Kestrel Corporation using a
set of filtered CCD cameras. These cameras are normally operated as an airborne remote
sensing system by Kestrel Corporation and provide digital images with 8 bit resolution and a
252 x 252 image pixel frame size. The goal of these experiments was to measure solar
backscatter from aerosols and Rayleigh scatter in the lower troposphere, in the near vicinity (a
few hundred meters) of the sensors. Appendix 1 summarizes the sky-scatter structure
experiments conducted by Kestrel Corporation. In summary, we obtained individual green
and blue images with unpolarized, horizontally, and vertically polarized images, plus dark
response on each focal plane (cover on), and uniformity of the focal plane responsivity by use
of a sunlit diffusion source.

Figures 8A to 8C illustrate luminance images (combined green and blue filters) used to
determine the focal plane background dark noise (8A), the focal plane response to a diffuse
illumination source (8B), and the response to the sunlit sky. In the case of the sunlit sky figure
8C illustrates the solar scatter symmetry very well in both green and blue. Unfortunately black

and white reproduction is unable to show these features clearly.

Figure 8A Dark Focal Plane Figure 8B Diffusely Figure 8C Luminance image
Iluminated Image of sky showing green and
blue scatter from the sun.

Figures 9A and 9B show the solar scatter pattern observed by camera V2 observed in green
and blue channels respectively. Image analysis can be accomplished using the composite G+B

to enhance signal to noise ratio or the separated G and B channels.
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Figure 9A Solar Scatter Observed in
Green Band, Sensor V2

Figure 9B Solar Scatter Observed
Blue Band, Horizontally Polarized

Several diagnostic configurations were explored for this experiment. The dark current
statistical noise characteristics for the cameras were measured by covering the instruments
and recording data. The focal plane structure noise was measured by putting an (almost)
uniform diffusive surface over the lenses and recording data. Finally measurements were
made in several wavebands, and in two polarization modes for vertically viewing sensors and
for the virtual triangulation geometry with the sensors separated by 66.5 feet and the altitude
of intersection about 100 feet. Table 1 summarizes the focal plane and objective-space
characteristics of the visible and NIR cameras. For more details of this experiment refer to the

Kestrel data summary report in Appendix 1.

Table 1

Camera Characteristics and Projected Objective Space Quantities

Camera Band Pixel IFOV FOV Pixel Footprint | Image
mrad mrad At 100 ft Dimension —
_pixels

V2 Green,Blue 91 442 x 1075 ~2.8cm 768x486
(Polarized)

V4 Green,Blue 91 442 x 1075 ~28cm 768x486
(Polarized)

IR MWIR 14 680 x 680 ~4,7cm 486 x 486
3-5 mm

15




In addition to the visible G-B data sets an Amber near infrared (3-5 pm) camera was
operated to view zenith in the vicinity of the visible beam intersection. This camera was
used primarily to see if the signal to noise ratio on a cooled MWIR system could detect
structure in the lower atmosphere. Because of the 8-bit digitization level (i.e. 256 intensity
levels) we believed that this sensor might be marginal for detecting atmospheric structure but
the presence of water vapor and nearly subvisual clouds may have enhanced our ability to
detect turbulence and winds. Figures 10A — 10C compares one data frame obtained by the IR
camera with the focal plane response to both cold and hot plates placed over the objective

lens. It is apparent that a strong asymmetry in focal plane response exists.

Figure 10A IR Data Image Figure 10B IR Hot Plate Image  Figure 10C IR Cold
Plate

The 2-dimensional spatial PSD’s (Power Spectral Density estimates) of truncated images
(128x128) pixels and 2-d correlation functions were computed. The images were truncated to
ensure that radial variation in focal plane noise and responsivity could be minimized. This

procedure also (nearly) eliminates the requirement for flat-fielding the data frames.

The PSD’s computed for the Kestrel AIRCAM imager in measurement mode, dark current
mode, and diffuse scatter mode are compared in Figure 11A and 11B. Figure 11A compares
the measured sky background spectrum with example spectral slopes, k™ k? and K. The
experiment spectrum drops into the noise level at a spatial wavelength about 30 pixels.
Figure 11B shows that the focal plane pattern and dark current noise (symmetric in k-space)
and the readout noise (1/f or (k™) spectrum in the readout direction may be a significant
deterrent to measurement of very small-scale structure inasmuch as the structure spatial

frequency may lie beyond the noise cutoff frequency.
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Figures 11 and 12 clearly show the role of focal plane noise and readout noise in the
AIRCAM and IR sensors. The readout noise is clearly 1/f (in amplitude) and is
approximately the same magnitude for the IR sensor sky data as for the hot plate and cold
plate calibration frames. In fact, the mean value of sky background in the IR band was lower
than either the hot or cold calibration frame values, indicating that the sky was colder than
either calibration temperature. For these reasons we do not attempt to correct the IR camera

data for noise and cannot pursue analysis in terms of structure motion and correlation length.

We pursued estimation of the phase drift and the correlation function parameters for the
AIRCAM data based upon the nearly 2 order of magnitude signal to noise ratio ( accounting
for focal plane plus readout noise spectra). Figure 13 illustrates the average autocorrelation
function for the five frames of data. Figure 14 presents the “auto-Phase spectrum for the

same set of AIRCAM data frames.

AUTOCORRELATION FUNCTION

32
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TRP
Figure 13 Autocorrelation Function Figure 14 Average Phase Spectrum for
for 5 successive AIRCAM Image Frames Same set of AIRCAM Images

The autocorrelation data clearly shows a symmetric pattern characteristic of the Gaussian
(presumably) characteristic of atmospheric low altitude turbulence as averaged over 5
successive image frames. The phase data are ambiguous, but seem to indicate definite phase

peaks at selected spatial frequencies which may be emphasized by our thresholding method.
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The Parzen- windowed power spectra illustrated in Figure 15A are used to compute the cross

correlation functions for successive image frame delay times as illustrated in Figure 15B.

CROSS PSD - 2 FRAME DELAY
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Figure 15A Cross PSD for Successive
AIRCAM IMAGE Frames. Straight
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The results shown in Figure 15A and B show that valid cross PSD and correlation functions
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can be computed for atmospheric turbulence on a small scale despite the high noise levels in

the sensor and backgrounds. The 2 pixel offset in the correlation function center corresponds

to a horizontal “wind” displacement of the turbulent structure of about 40 cm corresponding

to a wind velocity of about 5 to 10 mph. This is consistent with local observations.

3.1.5 High Altitude Experiments

Two types of high altitude simulation experiments were conducted. We analyzed the GLO

spectrometric data from the University of Arizona instruments flown on Shuttle Flight STS-

85. The GLO instruments were flown in the look-forward, look-back configuration with a +

65 degree azimuth with respect to the perpendicular to the spacecraft velocity vector to

provide virtual triangulation geometry. The instrument lines of sight intersected the limb at

about 58 km.
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The second experiment was observation of the airglow emissions in the visible to Near-IR
spectral range using the Kestrel Fourier Transform Hyperspectral Imager (FTHSI). In both
experiments, the atmospheric airglow emission was the target signal. The goals of these
experiments were first, to determine if the virtual triangulation geometry actually could be
implemented by space-borne detectors and second, to determine if an FTHSI instrument
could produce useable atmospheric data with sufficient spatial and spectral resolution to

identify well known atmospheric airglow features.

3.1.5.1 GLO Airglow Data Analysis

Dr. Lyle Broadfoot of University of Arizona, Lunar and Planetary Institute has conducted
GLO experiments on several STS flights. A selection of data from STS - 85 were provided to
this project under subcontract. The geometry of the STS - 85 experiment is similar to that
shown in figure 1 except that the two sensors, GLO 5 and GLO 6 are oriented to intersect the
limb with a line-of-sight tangent altitude of 59 km. Appendix 2 contains selected details of
the STS - 85 GLO experiments. Table 2 summarizes the spacecraft parameters and camera

details relevant to this experiment

Table 2
Spacecraft Parameters and Camera Characteristics

Spacecraft: STS -85
Altitude: 400 km
Orientation: Pitch = 180 degrees, Yaw =270
Velocity ~7 km/sec
Hyperspectral Cameras: GLO5 & GLOG6
Camera Spectral Range:
Camera Orientation: Elevation Angle (depression) 22 degrees, azimuth = + 65
degrees
LOS Tangent Altitude (center) 59 km (drifts with time)
Range to Tangent: 2120 km
LOS Velocity at tangent ~ 5 km/sec
Geometrical Time Lag of 5-6 LOS ~420 sec. (= 2120 km/5 km/sec )
Spatial footprint 5 km at earthlimb

Figure 16 summarizes the GLO airglow data for one satellite pass. Figures 17- 21 show the
detailed GL.O measurements of four airglow species emissions where the time variability

between GLO 5 (forward-looking) and GLO 6 (backward-looking) and the time delay
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between the data sets is established by matching intensity features. Each plot shows a delay
from the forward to backward-pointing sensors appropriate to the airglow enhancements at
their emission altitude. The thin airglow emitting layers are intercepted by the sensors
operating at 59 km tangent altitude at two positions, a near field between the tangent point
and the sensors and a far field intercept point on the far side of the 59 km tangent point. The
emission “onion skin” characteristic leads to two possible lag times, corresponding to
features in the near and far fields. It is unlikely that the sensor vertical resolution is sufficient

to spatially resolve the far-field component so we will concentrate on near field results.

We computed the delay times for a number of emission altitudes: 85, 95, 130 and 240 km to
compare with the GLOS5-6 delay observations. Table 3 summarizes the airglow
characteristics and near- and far-field ranges for the sensor to intercept the emitting layer.
The corresponding delay times compared with the GLO values. We adopted an LOS velocity
of 6 km/sec.

Table 3

Airglow Delay Predictions and Observations
Emitter Band Altitude Range Range Delay Delay GLO
Species nm km km -Near km - Far __min. -near min.-far Observation-
min.
OH 762 85 670 6100 1.9 17 7.2
Na 589.3 95 470 6300 1.3 18 4.8
02 762 95 470 6300 1.3 18 2.8
10) 557.7 ~130 340 6400 1. 18 2.8
101 630 ~240 320 7000 0.9 19 2

Comparison of the computed estimates of delay time vs. GLO measurements shows that most
of the observed delay times are about a factor of 2 greater than the predicted estimates. Some
of the factors creating this discrepancy may be due to airglow horizontal structure, and the
exact altitude of the layer as the two sensors scan the same region. There also is a trend in the
GLO observations to much higher values of delay time in the OH and Na emissions. Both of
these emissions are highly structured spatially and temporally so may not indeed be

statistically stationary over the period of the measurement, about 30 minutes.
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3.1.5.2 Hyperspectral Imager Analysis of Airglow Spectra

The Kestrel Fourier Transform Hyperspectral Imager (FTHST) was used to estimate the
capabilities of this instrument to measure high altitude airglow spectra in the 400 to 900 nm
range from the ground. This instrument was not designed to perform this measurement
mission, but we decided to attempt the measurement and to test the focal plane cooling

requirement required to detect airglow.

Figure 22 illustrates the night airglow data obtained by the FTHSI operating in an out-of-
design dry-ice cooling mode. The cross track data were integrated to obtain a higher signal to
noise ratio to suppliment the cooling effect. We found that the streetlight and other urban
signals such as Na and Hg lines were observed, but also we could identify most of the
emission features as airglow features. Figure 22 also identifies the airglow features including
Na and Hg emissions from streetlights. Only a few radiance enhancements were not
identified, but this is common in an urban background environment. The integration time for
these measurements was order 1 second or less, (down to TV 30 Hz sample rate).

Figure 23 shows night airglow features measured many years ago as published in Chamberlin®

We conclude that the FTHSI and similar imaging spectrographic instruments have the

sensitivity to detect airglow emissions in the visible-near IR bands and that useful space-borne

measurements can be obtained provided that the focal planes are cooled sufficiently.
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4. SENSOR AND SPACECRAFT CONCEPT DEVELOPMENT

In order to provide an initial feasibility check regarding incorporating this instrument concept
into a small satellite bus, we initiated a simple satellite design concept based upon the -
dimensions of the MightySat I bus. The purpose of this design effort was to ascertain

whether off the shelf CCD cameras and hyperspectral imagers could be coupled with a
MightySat II class buss and preserve the telescope resolution, instrument placement, and other
parameters required for the virtual trizu—lgulation, hyperspectral measurement requirements.

Figures 24 and 25 illustrate the design concept drawings.

Figure 24 Overall line drawing of conceptual sensor and satellite bus based upon
MightySat-II bus dimensions. The instrument dimensions are semi-scale, based upon
commonly available cooled CCD focal plane detectors for UV and visible spectral range.

An MWIR instrument may be somewhat larger and will require a second beam splitter.
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Panel P1 shows an overall view of the MightySat II bus, solar panels, and attached optical
system. P2 shows orthogonal views of the concept satellite MightySat Il bus. P3 shows the third
orthogonal view with the solar panels partly folded. The optical system is designed to fit within
the envelope of the folded solar panels, with the exception of the heat exchanger on the space-
viewing side of the satellite. P4 shows the overall envelope of the proposed optical system the
configuration for which is shown in PS. We plan to use dielectric layered beamsplitters to

separate UV, visible and IR optical signals.

Figure 25 shows the optical layout of a two camera (UV and IR) sensor. The dimensions of the
components are approximately to the scale of commercially available visible and UV cameras.
A cooled MWIR camera such as those made by AMBER would be considerably larger, but the
height of the optical module would fit would be scaled to accommodate the specific unit

selected.

A\
-
P

~
N

Figure 25 Telescope mirror layout for conceptual instrument design. The instrument uses an
off-axis telescope in order to maximize cross track field of view.
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We also assembled a very semi-scale model of a satellite to show that commonly available
cooled CCD detectors would fit on a MightySat-II bus. Figures 26A and 26B show a rendition

of the satellite concept as a third-scale model.

Figure 26A Front view of concept satellite model based upon MightySat II dimensions. The
optical sensor unit is a small module between the telescope and the satellite bus.

.’% N »‘\
Figure 26B Rear view of concept satellite model as above. The focal plane and telescope-
cooling grid is attached to the space-directed black surface of the MightySat-II bus. The
present concept involves using heat pipes to cool the telescope and focal planes.
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5.

COMMERCIAL APPLICATIONS

Commercial and military applications for the multispectral, virtual triangulation remote

sensing technique lie in the following areas:

Airborne sensing of atmospheric clear air turbulence (CAT) and small scale turbulence as
applied to airborne and space-borng laser weapons systems,

Satellite-borne mapping of atmospheric turbulence, waves, and winds as applied to
transmission of energy by means of waves and turbulence from the troposphere through
the stratosphere into the mesosphere,

Satellite-borne sensing of atmospheric turbulence regions which would affect airborne and

space-borne laser weapons systems.

Our commercialization plan incorporates the following elements which will be

implemented in the Phase II program:

o Modification of the existing space-qualified GLO sensor system developed by
University of Arizona, by improving the field of view, pixel resolution, and inclusion
of a Fourier Transform Hyperspectral imager in place of the dispersive imaging
spectrometer. We also will incorporate the quad C-40 processor. Both the FTHSI and
the Quad C-40 will be tested on the MightySat II.1 satellite testbed. This instrument
will operate in the UV through NIR spectral range (300 to 900 nm). This instrument
will be space qualified for Shuttle flight. We will seek a Shuttle manifest slot in
collaboration with our subcontractors at University of Arizona.

Development of a GLO and FTHSI-based instrument which will be compatible with the

MightySat I spacecraft platform. We will seek a MightySat II satellite development and

launch slot in collaboration with the USAF Research Laboratory Spacecraft Division.

Exercise of the developmental prototype instruments on an airborne platform to

investigate their capabilities for detection of CAT.
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6.

CONCLUSIONS

We summarize the work performed and the accomplishments on this SBIR contract as

follows:

Partial simulations of the background Gaussian correlated random noise structure allowed
measurement of the PSD and Phase Spectra and velocity for the virtual triangulation
geometry concept. High signal to noise ratio in these simulations and subsequent
measurements is required to accomplish very high spatial resolution atmospheric structure
measurements from satellite altitudes.

More detailed simulations, involving a true 3-D correlated random background drifting
through the triangulation sensors’ fields of view are required and could not be performed
in this phase because of computer memory limitations.

Ground-based CCD camera measurements made to simulate tropospheric-stratospheric
structure measurements show the importance of careful control of focal plane noise and
pattern noise. Focal plane cooling will certainly be required for visible, UV, and MWIR
atmospheric structure sounding using the techniques investigated in this project.

The feasibility of using Fourier Transform spectrometers to detect airglow and (by
inference) atmospheric backscatter structure was demonstrated by the Kestrel FTHSI
instrument operated against an airglow background. Again, the importance of focal plane
and instrument cooling to minimize background noise was demonstrated.

Measurements of airglow structure from the Shuttle using the GLO instruments shows
that the virtual triangulation technique is feasible. Instrument line-of-sight ambiguities and
spacecraft attitude changes limited our ability to obtain detailed pixel by pixel correlation,
but the overall data (integrated over the focal plane width) verifies that the virtual
triangulation technique works.

The results of this limited effort are promising but not definitive. Therefore, more detailed
simulations followed by ground-based experimental measurements using the airglow
layers as the signal source are recommended before proceeding to a formal instrument

design phase.
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8.

APPENDIX 1 Kestrel Corporation Experiment Report

This report summarizes the ground-based AIRCAM and FTHSI experiment operating
parameters as conducted by the Kestrel Corporation.
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CCRBIRANFIEN

6624 Gulton Court NE
Albuguerque, NM 87109
(505) 345-2327
TEST PLANNING SHEET
PROJECT: Vanguard Phase 1 SBIR
DATE: 15 September, 1998
TEST DESCRIPTION:

AirCam BACKSCATTER MEASUREMENTS.

TEST LOCATION:
Kestrel Corporation Facility parking lot. -

TESTS TO BE CONDUCTED:

e Low Altitude Atmospheric Structure and Wind Experiments per BMDO-
SBIRP1- 980508.doc/09/10/98 section 2.1.1

SPECIAL HANDLING REQUIREMENTS:
e Modify camera control software to allow for control of camera range and

offset.
TESTING ASSIGNED TO: Al Jones DATE: 9/15/98
TESTING AUTHORIZED BY: John Otten DATE: 9/15/98

RESULTS RECIEVED BY: ) LteSID o DATE: S/r6/ 95

(PLEASE ATTACH ALL DOCUMENTATION TO THIS SHEET)
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BACKSCATTER TEST #2A
LOCATION:
TIME:

DATE:

ITEM
TYPE
LENS TYPE:
FILTER NO.:
POLARIZER:
DIFFUSER:
F-STOP;
GATING;
RANGE:
OFFSET:
ORIENTATION:
IMAGE #S (v2)
IMAGE #S (V4)

BACKSCATTER TEST #2B
LOCATION:
TIME:

DATE:

ITEM
TYPE
LENS TYPE:
FILTER NO.:
POLARIZER:
DIFFUSER:
F-STOP:
GATING:
RANGE:
OFFSET:
ORIENTATION:
IMAGE #S (v2-B)
IMAGE #S (V4-B)
IMAGE #S (V2-G)
IMAGE #S (V4-G)

Sheet1

KESTREL PARKING LOT
14:36
15-Sep-98
V4-B V4-G V2-B V2-G
9701 9701 9701 9701
12-0302 12-0302 12-0302 12-0302
4 1 4 1
NONE NONE NONE NONE
NONE NONE NONE NONE
1.4 24 14 2.4
7 8 7 8
90 90 90 90
60 60 60 60
60 DeG 60 DeG 60 DeG 60 DeG
0-100
101-200 -
KESTREL PARKING LOT
14:36
15-Sep-98
V4-8 V4-G . V2-B V2-G
9701 9701 9701 g701
12-0302 12-0302 12-0302 12-0302
1 4 1 4
VERTICAL VERTICAL VERTICAL VERTICAL
NONE NONE NONE NONE
1.4 24 1.4 2.4
7 8 7 8
90 90 Q0 80
60 60 60 60
60 DeG 80 DeG 60 DeG 60 DeG
101-200 POLARIZER ON BLUE
201-300 POLARIZER ON BLUE
301400 POLARIZER ON GREEN TIME 14:53
401-500 POLARIZER ON GREEN TIME 14:53
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BACKSCATTER TEST #2C
LOCATION:
TIME:

DATE:

ITEM
TYPE
LENS TYPE:
FILTER NO.;
POLARIZER:
DIFFUSER;:
F-8TOP:
GATING:
RANGE:
OFFSET:
ORIENTATION:
IMAGE #8 (V2-8)
IMAGE #S (V4-B)
IMAGE #S (V2-G)
IMAGE #S (V4-G)

BACKSCATTER TEST #2D
LOCATION:
TIME:

DATE:

ITEM
TYPE
LENS TYPE:
FILTER NO.:
POLARIZER:
DIFFUSER:
F-STOP;
GATING:
RANGE:
OFFSET:
ORIENTATION:
IMAGE #S (V2)
IMAGE #S (V4)

KESTREL PARKING LOT
14:47
15-Sep-98
V4-8 V4.G V2-B
8701 9701 8701
12-0302 12-0302 12-0302
1 4 1
HORIZ HORIZ HORIZ
NONE NONE NONE
1.4 2.4 1.4
7 8 7
90 90 380
60 60 60
60 DeG 60 DeG 60 DeG
201-300 POLARIZER ON BLUE
301400 POLARIZER ON BLUE
401-500

Sheet1

V2-G
9701
12-0302
4
HORIZ
NONE
24
8
90
60
60 DeG

POLARIZER ON GREEN TIME 15:09 DELAY FOR CLO
POLARIZER ON GREEN TIME 15:09

501-600
KESTREL PARKING LOT
15:15
15-Sep-98
V4-B V4-G
8701 8701
12-0302 12-0302
1 4
NONE NONE
YES YES
1.4 2.4
7 8
80 0
80 60
60 DeG 60 DeG
501-530
801-630

Ve-B
9701
12-0302

NONE
YES
1.4

90
60
60 DeG

V2-G
9701
12-0302
4
NONE
YES
2.4
8
90
B0
60 DeG
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Sheet1

BACKSCATTER TEST #2E
LOCATION: KESTREL PARKING LOT
TIME: 15:19
DATE: 15-Sep-98

ITEM V4-B V4-G V2-B V2-G

TYPE 9701 8701 9701 9701
LENS TYPE: 12-0302 12-0302 12-0302 12-0302
FILTER NO.: 1 4 1 4
POLARIZER: NONE NONE NONE NONE
DIFFUSER; COVER - COVER COVER COVER
F-STOP; 1.4 24 14 2.4
GATING: 7 t 8 7 8
RANGE: 90 a0 80 90
OFFSET: 60 60 60 60
ORIENTATION: 60 DeG 60 DeG 60 DeG 60 DeG
IMAGE #S (v2) 531-560
IMAGE #S (V4) 631-660 -

BACKSCATTER TEST #2F
LOCATION: KESTREL PARKING LOT
TIME: 15:24
DATE: 15-Sep-98

ITEM IR .

TYPE . amber
LENS TYPE: 25mm
FILTER NO.: 3-5um
POLARIZER; NONE
DIFFUSER: NONE
F-STOP: -NA
GATING: AUTO
RANGE: N/A
OFFSET: AUTO
ORIENTATION: ZENITH

IMAGE #S 1-100




BACKSCATTER TEST #2G
LOCATION:
TIME:

DATE:

ITEM
TYPE
LENS TYPE:
FILTER NO.:
POLARIZER:
DIFFUSER:
F-STOP:
GATING:
RANGE:
OFFSET:;
ORIENTATION:
IMAGE #S

BACKSCATTER TEST #2H
LOCATION:
TIME:

DATE:

ITEM
TYPE
LENS TYPE:
FILTER NO.;
POLARIZER:
DIFFUSER:
F-STOP:
GATING:
RANGE:
OFFSET:
ORIENTATION:
IMAGE #5

Sheet1

KESTREL PARKING LOT
15:30
15-Sep-98
IR
amber
25mm
3-5um
NONE
WARM PLATE -
N/A
AUTO
N/A
AUTO
ZENITH
101-130

KESTREL PARKING LOT
16:37
15-Sep-98
IR
“amber
. 25mm
3-5um
NONE
COLD PLATE
N/A
AUTO
N/A
AUTO
ZENITH
131-160
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9/15/19838 < Mission Flight Date >
Van_Parkinglotl < Mission Name <80 Char with Underscores >
C:\VANPK1 < ACSYS Data File Storage Directory >
4 < Red Camera Filter Reference Number - >

1 < Green Camera Filter Reference Number >

4 < Blue Camera Filter Reference Number >

1 < Yellow Camera Filter Reference Number >

100 < Number of Images to be read Sequentially >

35 46.00000 < Latitude Data Collection Point >
~106 17.00000 < Longitude Data Collection Point >
780-900 < Red Camera Filter 780,900 >
001024 < Red- Camera Serial Number >
24060149 < Red Camera Lens Serial Number >

< Blue Channel V{4 >

412-525,455 < Green Camera Filter 412-525,hp-455 >
001022 < Green Camera Serial Number >
24061149 < Green Camera Lens Serial Number >

< Green Channel V4 >

780-900 < Blue Camera Filter 780,900 >
001021 < Blue Camera Serial Number >
24010078 < Blue Camera Lens Serial Number >

< Blue Channel V2 >

412-525,455 < Yellow Camera Filter 412-525,hp-455 >
002817 < Yellow Camera Serial Number >
24009078 < Yellow Camera Lens Serial Number >

< Green Channel V2 >

3~5um < IR Camera Filter 3-5um >

0010 < IR Camera Serial Number >
22240-084 < IR Camera Lens Serial Number >
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9.

APPENDIX 2 University of Arizona Data

This is the final report from Dr. Lyle Broadfoot, University of A
experiment data analysis.

rizona on GLO
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GLO 5 and GLO.6Data
Notes on Data in following pages

Page 1 — GLOVIEW - see description in “Home Page”
“www.glo.Ipl:arizona:edu/glo”
Page 2 — see (notes on page

Files are named by the MET time of their recording
3053530A is 3/05:35:30 MET
The alpha character represents the CCD source

A, B, C, D, E are spectrographs
F, G, H are imagers
I is a tracking image

Other files are defined on the page
Page 3 - @ b.Ist — a list of all records from the b-CCD, ie: b spectrograph
Page 5 — The Geometric Parameters in the header of each” *.fit” files
Page 7 — A plot of the elevation history in data set 3d0535 and 3¢0535
Data sets are named by the name of the first file in the data set

3d0535 means:
3" day
d flight
05 hrs
35 min

GLO DATA file system:
Flight GLO# DAY Flight
STS-53 :
STS-63
STS-69
STS-74
STS-85
STS-85

W hh B W N —
O A0 oW

Page 8 — TH (tangent height) of GLO-5, GLO-6 in file 3d_e0535.XLS.

Page 9 — Hyperspectral images of O,(0,0)
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Page 10 — Spectra and Hyperspectral images

Page 13 — Plot of geometric data showing top and bottom of the slit (corrected
Altitude)

Page 14 — Hyperspectral images of 5 emissions

File name GLO 6
60H5_1 6 OH(5,1)
6016300 -6 ~OI{6300)
602 0 0 6 02(0,0)
6015577 6 OI(5577)
6Na5892 6 Na(5892)

~ Page15-as (above for GLO 5
50HS5_1 5 OH(5,1)

Page 16 — Constant 4ltitude plots. “The TH of 59 km was selected since that
elevation was common to both instruments.
Note the shift in maxima

Page 17 - 21

These plots show the relative position of the two traces @ 59kmTH for
both instruments. The top plot shows the original position of the data in
time. The bottom plot shows a shifted GL.O-6 curve to match the'GLO 5
curve. The time shift is noted.

They are in order of time delay between when the signature showed in the
GLO-6 FOV pointing ahead and GLO-5 pointing behind shuttle track.

The difference in the latitude, longitude file was 6.7 min. '
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This is a reference list of the files in this Directory with some comments that apply to all data sets

The File is dir.ds

Directory of E1\3d0535

<DIR>
. <DIR>
3053530F FIT
3053530G FIT
3053530A FIT
3053530C FIT
30535308 FIT
3053530D FIT
3053530E FIT
3053556F FIT
3053556G FIT
3053556A FIT
3053556C FIT

3060603A FIT
3060603C FIT
3060603D FIT
3060603E FIT
3060618G FIT
3060618F FIT
3060618A FIT
30606188 FIT
3060618D FIT
3060618E FIT
30543068

864 file(s)

01-10-99 7:52a.
01-10-99 7:52a ..

17.280
17.280
63,360
63.360
63.360
63.360
63,360
17.280
17.280
63.360
63.360

63.360
63.360
63.360
63.360
17.280
17.280
63.360
63.360
63,360
63,360
63.360

43,634,534 bytes

1/10/89 7:45a
1/10/99 7:45a
1/10/89 7:45a
1/10/99 7:45a
1/10/99 7:45a
1/10/89 7:45a
1/10/88 7:45a
1/10/99 7:45a
1/10/99 7:45a
1/10/89 7:45a
1/10/99 7:45a

1/10/88 7:47a
1/10/99 7:47a
1/10/99 7:47a
1/10/99 7:47a
1/10/99 7:47a
1/10/99 7:47a
1/10/98 7:47a
1/10/89 7:47a
1/10/99 7:.47a
1/10/99 7:47a
1/10/29 7:46a

2dir(s) 509,362,176 bytes free

3D_E0535 XLS

A LST
B LST
c LST
D LST
E LST
F LST
G LST
H LST
| LsT
UCAT  MAP
GETMET OUT
MAKEHDF LST
DIR T
8 XLS
02_0_1HYFIT
BGO_1HY FIT
BG_REST FIT
02_0_OHNFIT
OHB_2HY FIT
OH5_1HY FIT
BGB_3HY FIT
OHB_3HY FIT
OIB300HY FIT

3053530F.FIT
3053530G.FIT
3053530A.FIT
3053530C.FIT
30535308.FIT
30535300D.FiT
3053530E.FIT
3053556F EIT
3053556G.FIT
3053556AFIT
3053556C.FIT

3060603A.FIT
3060603C.FIT
3060603D.FIT
3060603E.FIT
3060618G.FIT
3060618F.FIT
3060818A.FIT
30608188.FIT
3060618D.FIT
3060618E.FIT
30543068

279,552 01-14-39 7:36a 3d_e0535.xs

7.145
7,435
7.087
7.377
7.493
7,145
6,333

144

144

1,396
27,464
23,083

0
29,686

46,080
46,080
46,080
46,080
46.080
46.080
46.080
46,080
46,080

1/12/89 10:18p
112/99 10:19p
1/12/99 10:19p
1/12/99 10:19p
1/12/99 10:19p
1/12/99 10:18p
1/12/99 10:19p
112,99 10:19p
1/12/89 10:18p

1/8/29 3:02p
1/8/99 1:35p
1/11/98 3:55a
114/89 7:54a
1/14/99 7:51a

1/12/99 10:38a
1/12/99 10:38a
1/12/98 10:38a
1/12/88 10:38a
1/12/89 10:38a
1/12/89 10:38a
11299 10:38a
1/12/99 10:38a
1/12/89 10:38a

a.lst
b.ist
c.lst
d.Ist
elst
fist

g.ist
h.lst
idst

ucatmap
GETMET.OUT
MAKEHDR.LST
dir.txt

b.ds

02_0_1HY.FIT
GBO_1.FIT
BG_REST.FIT
02_0_OHY.FIT
OHB_2HY.FIT
OH5_1HY.FIT
BGB_3HY.FIT
OHB_3HY.FIT
OIB300HY.FIT

File Directory, All Files

XL worksheets for geometric data

Lists of data images from each detector in GLO instrument

Ancillary data from JSC giving fiight geometric information

A file of MET times and exposure times prepared to request UCAT data
Header or each spectral image in data set usualy merged with UCAT data
File DIR.

b.stin XL format

Hyperspectral images
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A =
—

¢

Volume in drive £ has no label
Volume Serial Number is 4254-0301

Directory of E:13d0535
30535308 FIT 63,360
30535568 FIT 63,360
30535678 FIT 63,360
30536428 FF 63.360-
30536268 FIT 63,360
30536418 FIT 63,360
30537038 FIT 63,360
3053FHE-FHF 63,360
30537268 FIT 63,360
30537418 FIT 63,360
30538028 HT 63,360
30538468 FF 63:366-
30538408 FIT 63,360
30539028 FIT 63,360
30539088 FIT 63,360
30539248 FF 63:366-
30539398 FIT 63,360
30540018 FIT 63,360
3054041B FIT 63,360
30546268 FF 63:366-
30540288 FIT 63,360
30541008 FIT 63,360
30541088 FIT 63,360
30544238 FF 63:366-
30541378 FIT 63,360
30541598 FIT 63,360
30542078 FIT 63,360
30542228 FF 63366
30542378 FIT 63,350
30542588 FIT 63,360
30543068 FIT 63,360
3054324B-FF 63366
30543368 FIT 63,360
30543588 FIT 63,360
30544058 FIT 63,360
30544268-FF €3:350-
30544358 FIT 63,360
30544578 FIT 63.360
30545078 FIT 63,360
30545225-F7 63:366—
30545348 FIT 63,360
30545568 FIT 63.360
30546048 FIT 63,360
30546485-FHF- 63366~
30546338 FIT 63,360
30546568 FIT 63360
30547038 FIT 63,360
30547 188-HT €3:366--
30547338 FIT 63,360
30547568 FIT 63380
30548628 AT 63,360
30548178 FiF 63366~
30548328 FIT €3,360
30548568 FIT 63360
30548018 FIT 63,360
30549168 F7— £63:366-
30549318 FiT 63,360
30549568 FIT 63,360
30550038 FIT 63,360
30550188 FT- 63:365
30550308 FIT 63,350
30550568 FiT 63.360
3CS5100B . FIT 63,380

1/10/99 7:45a
1/10/83 7:45a
H10/98 7:45a
H40/89-F 45
1/10/89 7:45a
1/1/99 7:45a
H10/89 7:45a
16199 745
1/10/99 7:45a
1/10/99 7:45a
1410083 7:45a
/99 7S
1/10/98 7:45a
11/98 7:46a
1410/98 7:48a
H18/99- 7 452
1/10/99 7:46a
1/10/99 7:48a
H10/93 7:46a
H16/99-F. 46~
1/10/99 7:46a
1/10/98 7:48a
H10/98 7:46a
H10/95-F 46a-
1/10/99 7:46a
1/10/98 7:46a
H10/88 7:46a
1/ 4987 46
1/10/89 7:46a
1710/99 7:46a
1+410/89 7:48a
H18/95-F. 460
1/10/98 7:46a
1/10/98 7:46a
110/99 7:46a

1/10/99 7:46a
11/99 7:46a
1410488 7:46a
H40/8S-F45e-
1/10/99 7:48a
1/1Q/99 7:46a
1410/88 7:46a
H48/99-F-46a
1/10/99 7:46a
1/10/89 7:48a
1/10/99 7:46a
H1808-F45a—
1/10/99 7:48a
1/10/89 7:46a
1/10/89 7:48a
H 18057462
1/10/9S 7:48a
1/10/99 7:46a
110/98 7:46a
1 10/29-7-46=~
1/10/29 7.48a
1/1Q/99 7:46a
1/10/99 7:46a
/16997 46—
1/10/99 7:48a
1/10/99 7.46a
viQes 7:46a




30554158 FF
30551298 FIT
30551568 FIT
30551598 FIT
30552298 FIT
30552568 FIT
30552588 FIT
30553438
30553288 FIT
30553568 FIT
30553588 FIT
30554438-FHF
30554288 FIT
30554568 FIT
30555008 FIT
30555+48 FHT-
30555278 FIT
30555418 FIT
30556038 FIT
30S56+HB-FH
30556258 FIT
30556408 FiT
30557028 FiT
30557408
30557258 FIT
30557408 FIT
3055801 FiT
30558098-FIF-
30558248 FIT
30558398 FIT
30559018 FIT
36559088-FHF
30553238 FIT
30559388 FIT
30600028 FIT
30606468-FF
30600228 FIT
30600378 FIT
30600598 FiT
30604078-F7--
30601228 FIT
30601368 FiT
30601588 FIT
30662068-F4F
30602218 FIT
30602368 FIT
30602588 FiT
30663058-F1F-
30603208 FIT
30603358 FIT
30603578 FIT
30604058-FIT
30604198 FIT
30604348 FIT
30604588 FIT
30665068 FHT
30605188 FIT
30805338 FIT.
30605568 FIT
30606038 FiF
30506188 FIT

63,360

63,380

€3,360

125 file(s)  7.920.000 bytes
Qdir(s) SORT78RT73K hytes free

HA GG F 45—
11099 7:48a
1/1Q:99 7:46a
1/10/99 7:46a
+4Er99-F 46
1/1C9S 7:46a
/1089 7:.46a
141099 7:48a
HEr99-746a—
1/10/99 7:46a
1/1Qv99 7:46a
141C88 7:46a
HYrS9-F 468
1/10/99 7:48a
1/1Q/839 7:46a
1/10/89 7:46a
HHrO9-F 40—
1/10/99 7:46a
1/1Q/89 7.46a
1/10/99 7:48a
H16r99-F-46a—
1/10/99 7:46a
1/1vea 7:46a
1/10/99 7:46a
1/10/e9 7:46a
17198 7:46a
110:98 7:46a
HHE0S-FdCa—
1710499 7:46a
1/1/299 7:48a
1/10/89 7:46a
997 45a—
1/10/99 7:48a
110488 7:46a
1110:98 7:46a
HOO0-F 47—
1/10/88 7:47a
1/1V88 7:47a
11088 7:47a
HAOST 47—
1/10/e8 7:47a
1/1ve8 7:47a
1410788 7.47a
HIHESFbF -
1/1v89 7:47a
1/10/99 7:47a
1110498 7:47a
HSHOS-F 47—
1/1v89 7:47a
1/1/e8 7:47a
110/88 7:47a
H10/09-7 472
1/10/99 7:47a
11Q/99 7:47a.
110/88 7:.47a
HAE9S- P4 T2~
1/10/98 7:47a
1/10/29 7:47a
110488 7:47a
O -F47a
1/10/88 7:47a

36551158,
30551298.
30551568B.
30551598,
36552148.
30552298.
30552568.
30552588.
3655313B.
30553288.
30553568,
30553588,

36554138.
30554288.

30555008.
3655514B.
30555278,
3055541B.

3855611B.
30556258.

30557028B.

30S57108.
30557258,

30357408.
30558018B.

30558248,

30606188,
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Vanguard Research, Inc.

www.vriffx.com

10400 Eaton Place, Suite 450
Fairfax, VA 22030-2201
Phone (703) 934-6300

Fax (703) 273-9398

May 4, 2000
00-0292

Defense Technical Information Center

8725 John J. Kingman Road

Suite 0944

Fi. Belvoir, VA 22060-6218

Subject: Final Report — Replacement Page, SF298

Reference: Contract No. DASG60-98-M-0073

Dear Sir or Madam:

SO00 OZ /402

Please find enciosed two copies of a replacement page for SF298 for the final report. Please replace
this page in your copies of the final report.

Should you have any questions, do not hesitate to contact me at (703) 934-6300.
Sincerely,
0

i Debra A. Spear
Contracts Administrator

\2\"* Enclosure as stated

Wer
Yir,




